解方程有几种方法?
一元一次方程一般解法:
⒈去分母方程两边同时乘各分母的最小公倍数.⒉去括号一般先去小括号,在去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便.可根据乘法分配律.⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.⒋合并同类项将原方程化为ax=b(a≠0)的形式.⒌系数化1方程两边同时除以未知数的系数,得出方程的解.二元一次方程一般解法,消元:将方程组中的未知数个数由多化少,逐一解决.一元二次方程一般解法有四种:
⒈公式法(直接开平方法)
⒉配方法⒊十字相乘法⒋因式分解法
解方程的两种方法分别是什么?
解方程的方法:
1、代数法: 去分母、去括号、移项、合并同类项、系数化为1。
2、图像法: 将方程变形,用x表示y,画出其图像,找出图像与x轴交点的值。
方程怎么解?
、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
(1)方程的左右两边同时加上或减去同一个数,方程的解不变。
(2)方程的左右两边同时乘同一个不为0的数,方程的解不变。
(3)方程的左右两边同时除以同一个不为0的数,方程的解不变 。
2、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
3、根据加减乘除法各部分之间的关系解方程。
(1)根据加法中各部分之间的关系解方程。
(2)根据减法中各部分之间的关系解方程。
(3)在减法中,被减速=差+减数。
解方程的方法和技巧是什么?
、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
三、根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。
3、根据乘法中各部分之间的关系解方程
在乘法中,一个因数=积/另一个因数
例如:列出方程,并求出方程的解。
4、根据除法中各部分之间的关系解方程。
解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
解方程的八种方法?
解方程的方法:
1、去分母,这是解一元一次方程的首要步骤,有分母的一元一次方程首先要去分母,当然如果方程中没有分母,省去此步骤。
2、去括号,去除分母之后,就该完成括号的去除了,如果有分母,先去分母再去除括号,没有括号的话可以省去此步骤。
3、移项,每个一元一次方程都会有的一步,就是把同类项的数据移动到同一边,把未知数移动到等号的左边。
4、合并同类项,把多项式中同类项合成一项叫做合并同类项,同类项的系数相加所得结果作为系数,字母和字母的指数不变,是解一元一次方程中的临门一脚,是很重要的一个步骤,合并同类项的时候要遵循合并同类项法则。
拓展资料:
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
相关概念
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6.注意事项:写“解”字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。
解方程怎么的方法?
在小学阶段,解方程是依据四则运算中已知数与得数之间的关系进行的。我们可以采用以下三种方法来解方程。
一、直接根据四则运算中已知数与得数之间的关系,求未知数的值。
例如:3.6÷x=0.9。这是除法式子,x是除数,表示x除3.6的商是0.9。根据除法中除数等于被除数除以商的关系,求x的值。
解方程: 3.6÷x=0.9
解: x=3.6÷0.9
x=4
二、把含有未知数x的项看成是一个数,逐步求出未知数的值。
例如:2x-6=14。把含有未知数的项(2x),看成是一个数。这样6是减数,2x是被减数,14是差。先求出2x等于多少,再进一步求出x的值。
解方程: 2x-6=14
解:2x=14+6
2x=20
x=20÷2
x=10
三、通过计算,先把原方程化简,再逐步求出方程的解。
例如:3x-2.5×4=5;先计算2.5×4,然后再依照前面的方法求未知数的值。
解方程: 3x-2.5×4=5
解: 3x-10=5
3x=5+10
3x=15
x=15÷3
x=5
又如:4.5x+5.5x+3=30;先计算4.5x+5.5x,然后再依照前面的方法求未知数的值。
解方程: 4.5x+5.5x+3=30
解: (4.5+5.5)x+3=30
10x+3=30
10x=30-3
10x=27
x=27÷10
x=2.7
练习:
解下列方程。
1.2-x=0.4 2.5x=63x+5=20 6x-14=10
7x-2x=5 (8+x)×8=120 5.4-3x=2×2.1 5x-2x-7=14