fft计算有效值原理?
FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform)。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明FFT的基本原理。
DFT的运算为:
式中
由这种方法计算DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中
的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。
延伸阅读
什么是FFT?
快速傅里叶变换,是计算机算傅里叶变换的常用方法。 FFT(FastFourierTransformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的FFT算法图发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
FFT是什么意思?在Audition软件里看到的?
FFT 是 “快速傅里叶分析算法”(或 “快速傅里叶变换”)在数字音频处理中的一种应用。它本身是一个较高深的数学问题,建议不要去纠这个概念。FFT 参数以它默认的就好。【友情提醒】Audition 有一系列版本。你在提有关 Au 问题时,应该首先告知大家,你的 Au 是哪个版本。
dft算法最通俗的理解?
DFT算法,是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换频域的采样。
FFT算法,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换的算法进行改进获得的。它对傅氏变换的理论没有新的算法发现,但是对于在计算机系统或者说数字系统中应用离散傅里叶变换,可以说进了一大步。
fft变换是如何得出频域的?
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。 由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
fft怎么算?
二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。下面讨论一维FFT的算法原理。
【1D-FFT的算法实现】
设序列h(n)长度为N,将其按下标的奇偶性分成两组,即he和ho序列,它们的长度都是N/2。这样,可以将h(n)的FFT计算公式改写如下 :
(A)
由于
所以,(A)式可以改写成下面的形式:
按照FFT的定义,上面的式子实际上是:
其中,k的取值范围是 0~N-1。
我们注意到He(k)和Ho(k)是N/2点的DFT,其周期是N/2。因此,H(k)DFT的前N/2点和后N/2点都可以用He(k)和Ho(k)来表示
fft技术?
FFT是技术一种DFT的高效算法技术,称为快速傅立叶变换(fast Fourier transform)。傅里叶变换是时域一频域变换分析中最基本的方法之一。在数字处理领域应用的离散傅里叶变换(DFT:Discrete Fourier Transform)是许多数字信号处理方法的基础。