什么叫晶体结构?
晶体结构是指晶体以其内部原子、离子、分子在空间作三维周期性的规则排列为其最基本的结构特征。
晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。自然界存在的固态物质可分为晶体和非晶体两大类,固态的金属与合金大都是晶体。
延伸阅读
晶体结构是由什么和什么构成的?
晶体结构可以用晶胞的晶格常数和晶(轴)间夹角来表示。晶胞是构成晶体的最基本单元,晶胞在三维空间的重复排列即形成晶体。晶体结构有无数种,但可归结为七个晶系、十四种布拉菲点阵(晶格)。在七个晶系中,立方晶系晶胞的晶格常数a=b=c,晶间夹角α=β=γ=90度。
晶体结构简称?
晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。自然界存在的固态物质可分为晶体和非晶体两大类,固态的金属与合金大都是晶体。晶体与非晶体的最本质差别在于组成晶体的原子、离子、分子等质点是规则排列的(长程序),而非晶体中这些质点除与其最相近外,基本上无规则地堆积在一起(短程序)。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
氯化钠的晶体结构是什么?
氯化钠的晶体结构是:
在一般情况下,氯化钠的晶体形成立体对称。在晶体结构中,较大的氯离子排成立方最密堆积,较小的钠离子则填充氯离子之间的八面体的空隙。每个氯离子的周围都有6个钠离子,每个钠离子的周围也有6个氯离子。钠离子和氯离子都是按照这种排列方式向空间各个方向伸展,所以形成氯化钠晶体。
扩展资料:
它是NaCl,食盐和石盐的主要成分,离子型化合物。无色透明的立方晶体,熔点为801 ℃,沸点为1413 ℃,相对密度为2.165。有咸味,含杂质时易潮解;溶于水或甘油,难溶于乙醇,不溶于盐酸,水溶液中性。在水中的溶解度随着温度的升高略有增大。当温度低于0.15 ℃时可获得二水合物NaCl·2H2O
晶体结构与性质知识点总结?
一、晶体与非晶体
1、晶体与非晶体
① 晶体:是内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的物质。
② 非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。
2、晶体的特征
(1)晶体的基本性质
晶体的基本性质是由晶体的周期性结构决定的。
① 自范性:
a.晶体的自范性即晶体能自发的呈现多面体外形的性质。
b.―自发‖过程的实现,需要一定的条件。晶体呈现自范性的条件之一是晶体生长的速率适当。
② 均一性:指晶体的化学组成、密度等性质在晶体中各部分都是相同的。
③ 各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。
化学晶体结构知识点?
晶体结构知识要点
1、晶体类型判别:
分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;
2、晶体熔沸点高低的判断?
(1)不同类型晶体的熔沸点:原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体;金属晶体熔沸点有的很高,如钨,有的很低,如汞(常温下是液体)。
(2)同类型晶体的熔沸点:
① 原子晶体:结构相似,半径越小,键长越短,键能越大,熔沸点越高。如金刚石>氮化硅>晶体硅。
② 分子晶体:组成和结构相似的分子,相对分子质量越大,分子间作用力越强,晶体熔沸点越高。如CI4>CBr4>CCl4>CF4。若相对分子质量相同,如互为同分异构体,一般支链数越多,熔沸点越低,特殊情况下分子越对称,则熔沸点越高。若分子间有氢键,则分子间作用力比结构相似的同类晶体强,故熔沸点特别高。
③ 金属晶体:所带电荷数越大,原子半径越小,则金属键越强,熔沸点越高。如Al>Mg>Na>K。
④ 离子晶体:离子所带电荷越多,半径越小,离子键越强,熔沸点越高。如KF>KCl>KBr>KI。
3、原子晶体与金属晶体熔点比较:原子晶体的熔点不一定都比金属晶体的高,如金属钨的熔点就高于一般的原子晶体。
4、分子晶体与金属晶体熔点比较:分子晶体的熔点不一定就比金属晶体的低,如汞常温下是液体,熔点很低。
5、判断晶体类型的方法?
(1)依据组成晶体的微粒和微粒间的相互作用判断
① 离子晶体的构成微粒是阴、阳离子,微粒间的作用力是离子键。
② 原子晶体的构成微粒是原子,微粒间的作用力是共价键。
③ 分子晶体的构成微粒是分子,微粒间的作用力是分子间作用力。
④ 金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用力是金属键。
(2)依据物质的分类判断
① 金属氧化物(如K2O、Na2O2等)、强碱(如NaOH、KOH等)和绝大多数的盐类是离子晶体。
② 大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。
③ 常见的原子晶体单质有金刚石、晶体硅、晶体硼等,常见的原子晶体化合物有碳化硅、二氧化硅等。
④ 金属单质(除汞外)与合金是金属晶体。
(3)依据晶体的熔点判断
① 离子晶体的熔点较高,常在数百至一千摄氏度。
② 原子晶体的熔点高,常在一千至几千摄氏度。
③ 分子晶体的熔点低,常在数百摄氏度以下至很低温度。
④ 金属晶体多数熔点高,但也有相当低的。
(4)依据导电性判断
① 离子晶体的水溶液及熔化时能导电。
② 原子晶体一般为非导体。
③ 分子晶体为非导体,而分子晶体中的电解质溶于水,使分子内的化学键断裂形成自由离子也能导电。
④ 金属晶体是电的良导体。
(5)依据硬度和机械性能判断
① 离子晶体硬度较大或较硬、脆。
② 原子晶体硬度大。
③ 分子晶体硬度小且较脆。
④ 金属晶体多数硬度大,但也有较小的,且具有延展性。
(6)判断晶体的类型也可以根据物质的物理性质:
① 在常温下呈气态或液态的物质,其晶体应属于分子晶体(Hg除外),如H2O、H2等。对于稀有气体,虽然构成物质的微粒为原子,但应看作单原子分子,因为微粒间的相互作用力是范德华力,而非共价键。
② 固态不导电,在熔融状态下能导电的晶体(化合物)是离子晶体。如:NaCl熔融后电离出Na+和Cl-,能自由移动,所以能导电。
③ 有较高的熔、沸点,硬度大,并且难溶于水的物质大多为原子晶体,如晶体硅、二氧化硅、金刚石等。
④ 易升华的物质大多为分子晶体。
⑤ 熔点在一千摄氏度以下无原子晶体。
⑥ 熔点低,能溶于有机溶剂的晶体是分子晶体。
6、Na2O2:Na2O2的阴离子为O22-,阳离子为Na+,故晶体中阴、阳离子的个数比为1:2。
7、稳定性:分子的稳定性是由分子中原子间化学键的强弱决定。
8、冰的熔化:冰是分子晶体,冰融化时破坏了分子间作用力和部分氢键,化学键并未被破坏。
9、离子晶体熔化:离子晶体熔化时,离子键被破坏而电离产生自由移动的阴阳离子而导电,这是离子晶体的特征。
10、离子晶体特例:
① 离子晶体不一定都含有金属元素,如NH4Cl② 离子晶体中除含离子键外,还可能含有其他化学键,如NaOH、Na2O212、
11、非离子晶体特例:
① 溶于水能导电的不一定是离子晶体,如HCl等
② 熔化后能导电的晶体不一定是离子晶体,如Si、石墨、金属等。
③ 金属元素与非金属元素构成的晶体不一定是离子晶体,如AlCl3是分子晶体。
三种典型的晶体结构是什么?
1、体心立方晶格:以一个顶点作为原点,向近邻3个体心格点作出3个基矢,由此3个基矢构成的平行六面体;
2、面心立方晶格:在晶胞的八个角上各有一个原子,并且6个面的中心各有一个原子,构成立方体,面心立方晶格是原子最紧密的排列方式;
3、密排六方晶格:密排六方晶格金属的原子分布在六棱柱体的各个结点和上下底面的小心处,此外在六棱柱体的内部中间还有三个原子。
晶体结构和类型?
常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格。
a1(立方最密堆积ccp,如金,铜,铝)a2(体心立方堆积bcp如钠)a3(六方最密堆积,hcp,如mg,zn)a4(金刚石型堆积)
晶体结构的概念?
晶体结构
晶体以其内部原子、离子、分子在空间作三维周期性的规则排列为其最基本的结构特征。任一晶体总可找到一套与三维周期性对应的基向量及与之相应的晶胞,因此可以将晶体结构看作是由内含相同的具平行六面体形状的晶胞按前、后、左、右、上、下方向彼此相邻“并置”而组成的一个集合。晶体学中对晶体结构的表达可采取原子分立分布的方式,亦可用具连续分布的电子密度函数的方式。