什么是单纯形法的两阶段法 什么是单纯形法计算的两阶段法

什么是单纯形法?

基本含义:

单纯形法是求解线性规划问题最常用、最有效的算法之一。

单纯形法最早由 George Dantzig于1947年提出,近70年来,虽有许多变形体已经开发,但却保持着同样的基本观念。

如果线性规划问题的最优解存在,则一定可以在其可行区域的顶点中找到。基于此,单纯形法的基本思路是:先找出可行域的一个顶点,据一定规则判断其是否最优;若否,则转换到与之相邻的另一顶点,并使目标函数值更优;如此下去,直到找到某最优解为止。

延伸阅读

单纯形法只能求最大值吗?

单纯形法是针对求解线性规划问题的一个算法,这个名称里的’单纯形’是代数拓扑里的一个概念,可以简单将’单纯形’理解为一个凸集,标准的线性规划问题可以表示为:

min(or max) f(x)=cx

s.t. Ax=b

x>=0,b>=0

以上形式称为线性规划标准型,使用单纯型法时,如果约束条件含有不等式时需新增变量(松弛变量、人工变量)转化为标准型,min. f(x)=cx指求函数最小值(也可以是求最大值),x是一个Rn维向量代表有n个变量,线性规划问题主要是面向实际问题,x变量可以代表距离、成本、价格、数量等,线性规划问题中要求x大于等于0,c同样是一个Rn维向量,这样cx实际上就是一个线性函数f(x);s.t.代表subject to代表服从于意思,这里是指变量x需要满足的约束条件,A是一个Rm*n维矩阵,代表有m个等式约束。下面是一个约束是不等式的情形:

min -4×1-x2

s.t. -x1+2×2<=4

2×1+3×2<=12

x1-x2<=3

x1,x2>=0

求解上面这个问题只要初中数学知识即可,具体可以使用代数法或几何的方法轻松得到,考虑到实际问题当中变量x是多维的,约束条件也会比示例多的多,这就需要一个一劳永逸的算法能通过计算机来获得正解,单纯形法就是这样的一个算法。单纯形法最早由 George Dantzig于1947年提出,单纯形法对于求解线性规划问题是具有跨时代意义的,其实不仅仅是针对线性规划,非线性规划问题在求解的过程中也大量依赖单纯形法,

单纯形法确定出基变量?

出基变量是运筹学中单纯形法的一个概念。是通过计算最小比值找出随着入基变量的增加首先减少到0的基变量。这个基变量变为0意味着下一个可行解中它就变成了非基变量。因此,这个变量被称为当前迭代的出基变量。所以出基变量是通过最小比值法确定的最小比值为?=min{bi/aik,aik>0},即为基变量值与所在行的换入变量所在列的对应的大于0的元素相除,得到的最小比值对应的哪一行,则行对应的基变量为换出变量。

简述求解非线性方程的常用的方法有哪些?

一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。这是区间迭代法的主要优点,其缺点是计算量大。

另一种方法称为不动点算法或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。这种方法优点是,不要求f(□)的导数存在,也不用求逆,且具有大范围收敛性,缺点是计算量大。

为什么单纯形法最后常数是最优解?

因为基本可行解的个数有限,故经有限次转换必能得出问题的最优解。

从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。

通过优化迭代,直到目标函数实现最大或最小值。

如果线性问题存在最优解,一定有一个基可行解是有最优解。

因此单纯形法迭代的基本思路是:先找出一个基可行解,判断其是否为最优解。

如为否,则转换到相邻的基可行解,并使目标函数值不断增大,一直找到最优解为止。扩展资料:由于目标函数和约束条件内容和形式上的差别,线性规划问题可以有多种表达式。

因此,为了便于讨论和制定统一的算法,在制定单纯形法时,规定使用单纯形法求解的线性规划问题需要有一个标准形式,它有下面三个特征:

(1) 标准形式目标函数统一为求极大值或极小值,但单纯形法主要用来求解极大值;

(2) 所有约束条件(除非负条件外)都是等式,约束条件右端常数项bi全为非负值;

(3) 所有变量的取值全为非负值。

运筹学单纯形法?

本代码通过matlab实现运筹学中单纯形法求最优值的计算,输入单纯性表中a(技术系数矩阵),b(限额矩阵),c(价值系数)的初始值即可用单纯形表法得到最优解,只能计算max z的最优解。计算过程中的各个单纯形表的数值通过矩阵的形式储存在各个变量中,可以根据需要随时调取。

单纯形算法的基本思想和基本步骤?

答:基本思想

单纯形法是是保证b>=0,通过转轴,使得检验数r>=0来求得最优解,而使用对偶单纯形法的前提是r>=0,通过转轴,使得达到b>=0。二者都是b>=0,r>=0同时满足时达到最优。
在灵敏度分析时,对cj的灵敏度分析用单纯形法来考察,因为此时cj变动导致检验数变动。而bi的变动则是用到对偶单纯形法来求解检验。

基本步骤:基本步骤1、标准化(构造初始可行基);2、列出初始单纯形表;3、最优性检验:判断是否最优解根据最大检验数原则:ifσj≦0是:计算结束;否:转入下一步4、从一个基可行解转到相邻的另一个基可行解,然后转3。要保证目标函数值比原来更优。

单纯形法的原理是什么?

单纯形法是一种迭代算法,其基本原理及主要步骤是:首先设法找到一个(初始)基可行解,然后再根据最优性理论判断这个基可行解是否最优解。若是最优解,则输出结果,计算停止;若不是最优解,则设法由当前的基可行解产生一个目标值更优的新的基可行解,再利用最优性理论对所得的新基可行解进行判断,看其是否最优解,这样就构成一个迭代算法。由于基可行解只有有限个,而每次目标值都有所改进,因而必可在有限步内终止。如果原问题确有最优解,必可在有限步内达到,且计算量大大少于穷举法;若原问题无最优解,也可根据最优性理论及时发现,停止计算,避免错误及无效运算。

管理运筹学单纯形法?

单纯形法的基本思想

  单纯形法是一种多变量函数的寻优方法。其主要思想是先找一个基本可行解,判断是否为最优解。如果不是则找另外一个解,再进行判定,如此迭代运算,直至找到最优解或者判定其无界。

单纯形法的特点

  单纯形法是一种直接、快速的搜索最小值方法,其优点是对目标函数的解析性没有要求,收敛速度快,适用面较广。

  单纯形法的一般解题步骤可归纳如下:

1.把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。

2.若基本可行解不存在,即约束条件有矛盾,则问题无解。

3.若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。

4.按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。

5.若迭代过程中发现问题的目标函数值无界,则终止迭代。

什么是运筹学里的单纯形法呢?

单纯形法simplex method求解线性规划问题的通用方法.单纯形是美国数学家G.B.丹齐克于1947年首先提出来的.它的理论根据是:线性规划问题的可行域是 n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到.顶点所对应的可行解称为基本可行解.单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行.因基本可行解的个数有限,故经有限次转换必能得出问题的最优解.如果问题无最优解也可用此法判别.根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n的值称为一个解,满足所有的约束条件的解称为可行解.使目标函数达到最大值(或最小值)的可行解称为最优解.这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值).求解线性规划问题的目的就是要找出最优解.最优解可能出现下列情况之一:

①存在着一个最优解;

②存在着无穷多个最优解;

③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止目标函数的值无限增大(或向负的方向无限增大).单纯形法的一般解题步骤可归纳如下:

①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解.②若基本可行解不存在,即约束条件有矛盾,则问题无解.③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解.④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解.⑤若迭代过程中发现问题的目标函数值无界,则终止迭代.用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数.现在一般的线性规划问题都是应用单纯形法标准软件在计算机上求解,对于具有106个决策变量和104个约束条件的线性规划问题已能在计算机上解得.改进单纯形法原单纯形法不是很经济的算法.1953年美国数学家G.B.丹齐克为了改进单纯形法每次迭代中积累起来的进位误差,提出改进单纯形法.其基本步骤和单纯形法大致相同,主要区别是在逐次迭代中不再以高斯消去法为基础,而是由旧基阵的逆去直接计算新基阵的逆,再由此确定检验数.这样做可以减少迭代中的累积误差,提高计算精度,同时也减少了在计算机上的存储量.对偶单纯形法1954年美国数学家C.莱姆基提出对偶单纯形法.单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止.对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为 max{yb|yA≤c}.当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0.即知y=cBB-1(称为单纯形算子)为对偶问题的可行解.所谓满足对偶可行性,即指其检验数满足最优性条件.因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解.数学优化中,由George Dantzig发明的单纯形法是线性规划问题的数值求解的流行技术.有一个算法与此无关,但名称类似,它是Nelder-Mead法或称下山单纯形法,由Nelder和Mead发现(1965年),这是用于优化多维无约束问题的一种数值方法,属于更一般的搜索算法的类别.这二者都使用了单纯形的概念,它是N维中的N + 1个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体,等等.

版权声明