什么是递归数列?
递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。
中文名
递归数列
外文名
recursive sequence
数列项数分类
有穷数列和无穷数列
特殊的数列
呈周期性变化的数列叫做周期数列
常用方法
公式法、累加法等共十种方法
延伸阅读
是不是只有循环群有阶数?
不是的。
阶数只代表正方形矩阵的大小,并没有太多的意义。与其较为相关的矩阵的”秩”定义为一个矩阵中不等于0的子式的最大阶数。但需要注意的是这里的”子式”是指行列式。
1.在递归数列中的定义
递归数列: 一种用归纳方法给定的数列。
编程语言中的阶数
举例:一个2维数组各元素输出后成魔方阵。在制定这样魔方阵的2维数组时要求是:阶数是1到15之间的奇数。 在此中的阶数举例如3阶就是3*3的魔方阵,5阶就是5*5的魔方阵,也就是二维数组两个维度的长度。
2.矩阵”阶数”的定义
一个m行n列的矩阵简称为m*n矩阵,特别把一个n*n的矩阵成为n阶正方阵,或者n阶矩阵。
此外,行列式的阶数与矩阵类似,但是行列式必然为一个正方阵。
由上面定义可知,说一个矩阵为n阶矩阵,即默认该矩阵为一个n行n列的正方阵。高等代数中常见的可逆矩阵,对称矩阵等问题都是建立在这种正方阵基础上的。
3.折叠编辑本段导数阶数定义
1.二阶以上的导数习惯上称之为高阶导数。2.一个函数的导数,其中A为三阶导数,B为四阶导数,则可以说B是A的高阶导数。
斐波那契数列递归算法?
答:斐波那契数列递归算法是:在一列数中,从第三项开始,每项数等于和它相邻的前面两项数的和。用递推式表示为:an+2=an+1+an(n≥1)
求解斐波那契数列的时间复杂度,分别用递归和非递归方法?
Fibonacci数列
无穷数列1,1,2,3,5,8,13,21,34,55,···,称为Fibonacci数列。它可以递归的定义为
1 n=0
F(n)= 1 n=1
F(n-1)+F(n-2) n>1
第n个Fibonacci数可递归地计算如下:
int Fibonacci ( intn)
{
If(n
ReturnFibonacci(n-1)+Fibonacci(n-2);
}
1+T(n-1)+T(n-2) n>1
Tn=
0 n
时间复杂度为指数时间O(kn)
非递归计算如下:
Int Fibonacci(int n)
{
If(n
else{
int a=b=1;
for(int i=0;i
递归数列四大定理?
递归数列
递归数列(recursive sequence ):一种给定A1后,用给定递归公式An+1=f(An)由前项定义后项所得到的数列。
基本信息
外文名recursive sequence
定义
给定,由递归公式 由前项定义后项所得到的数列 称为递归定义数列,简称为递归数列(recursive sequence )。
等差数列
若递归函数为,那么给定 后,由递归公式 定义出来的数列 是等差数列,容易求出其通项公式为。
等比数列
若递归函数为,那么给定,由递归公式 定义出来的数列 是等比数列,容易求出其通项公式为。
一阶线性递归数列
等差数列、等比数列对应的特殊的递归函数、 ,比这些稍复杂一点的是普通的一元线性函数 定义的递归数列。
若递归函数为一元线性函数,那么由递归公式,即 定义的数列 称为一阶线性递归数列,在给定 后,如何求出定义出来的一阶线性递归数列的通项呢?一般有两种做法:
(1)我们可以将 拆项相凑改写为,若记,这就成为了递归等比数列的递归模式 了。由,即,可得。
递归数列
递归数列
(2)也可以在猜测 后,通过待定系数法求出 和,再用数学归纳法证明。
例1给定,求由一阶线性递归公式 定义的数列的通项。
解法1将 改写为,显然应该取,记,
则有, 。所以,最后可得
解法2猜测,由, ,通过待定系数法求出,即。下面用数学归纳法证明。
递归数列
初始验证:时, ,符合通项公式。
通项假定:设 时结论成立,即,
渐进递推: ,即 时结论也成立。
所以 确为所求之通项公式。
非线性递归
有很多非常有趣的数学问题可以归结为递归数列,但其对应的递归函数不一定都是线性函数,在研究其收敛性时也未必要把通项求出来。
例1已知, , ,试证明由此递归定义的数列 收敛,并求其极限。
解利用数学归纳法可以证明数列单调增加,事实上,设,那么。
再利用数学归纳法可以证明数列有上界,事实上,设,那么。
根据单调有界数列必收敛,可设,且必有,
递归数列
从而由 可得,得唯一正数解,即。
例2已知, , ,试证明由此递归定义的数列 收敛,并求其极限。
解利用数学归纳法可以证明数列子数列 单调减少有下界0,有。
利用数学归纳法可以证明数列子数列 单调增加有上界1,有。
所以。
一阶线性差分方程
一阶线性递归数列的递归关系式,对应了一个一阶线性非齐次差分方程,一阶线性非齐次差分方程的解法本质上就是体现了求一阶线性递归数列通项的方法。
二阶线性齐次递归数列
例3设x1=3,x2=7,x(n+2)=5x(n+1)-6Xn,求数列 的通项。
解将递归定义式改写为,可知数列 是以3为公比的等比数列,由此可求得,
再改写为,可知数列 是等比数列,由此可求得。
最后可得数列通项为。
本例解法具有较普遍一类问题具有典型意义及推广价值。
例4(斐波那契数列)设F1=1,F2=1,F(n+2)=F(n+1)+Fn ,求数列{Fn} 的通项。
分析与解斐波那契数列是一个非常典型的二阶递归数列,这类二阶线性齐次递归数列问题的解法,可由本词条例3的解法得到启发,若方程(特征方程)有两个不相等的实数解(特征根) ,则由二阶线性齐次式F(n+2)+pF(n+1)+qFn=0递归定义数列的通项为,其中待定常数 由给定的两个初始项确定。
这里斐波那契数列对应的特征方程为,特征根为。所以可得
,根据,可确定出,即
递归数列极限
设 区间I,若f(x)在区间I单调上升,a>a(a<a) ,则数列{a}单调上升(单调下降);若f(x)在区间I单调下降,则数列{a}不具单调性。
证:设f(x)在区间I单调上升,由a>a得到f(a)>f(a) ,即a>a。若a>a ,则f(a)>f(a) ,即a>a。因此对于 有a>a ,即数列{a}单调上升。当a<a 时同样可证数列{a}单调下降。另一结论类似可证。