切比雪夫多项式及其证明方法?
切比雪夫多项式是与棣莫弗定理有关,以递归方式定义的一系列正交多项式序列。 通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un表示。切比雪夫多项式 Tn或 Un代表 n 阶多项式。
切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。
在微分方程的研究中,切比雪夫提出切比雪夫微分方程
和
相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。 这些方程是斯图姆-刘维尔微分方程的特殊情形。
切比雪夫低通滤波器特点?
切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。
根据频率响应曲线波动位置的不同,切比雪夫滤波器可以分为以下两种: 在通带(或称“通频带”)上频率响应幅度等波纹波动的滤波器称为“I型切比雪夫滤波器”;
”’n”’阶第一类切比雪夫滤波器的幅度与频率的关系可用下列公式表示 :
:
其中:
*
*而是滤波器在[[截止频率]]的放大率 (”注意”: 常用的以幅度下降3[[分贝]]的频率点作为截止频率的定义不适用于切比雪夫滤波器!)
f>:> 是 n阶[[切比雪夫多项式]]
其中
或:
”’切比雪夫滤波器”’的阶数等于此滤波器的电子线路内的电抗元件数。
切比雪夫滤波器的幅度波动 =[[分贝]]
当 ,切比雪夫滤波器的幅度波动= 3分贝。
如果需要幅度在在阻频带边上衰减得更陡峭,可允许在复平面的 轴上存在零点。但结果会使通频带内振幅波动较大,而在阻频带内对信号抑制较弱。 这种滤波器叫[[椭圆函数滤波器]]或考尔滤波器。 切比雪夫多项式是与棣莫弗定理有关,以递归方式定义的一系列正交多项式序列。 通常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪夫多项式Tn或Un代表n阶多项式。
切比雪夫多项式性质证明?
切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。
在微分方程的研究中,数学家提出切比雪夫微分方程
切比雪夫多项式
和
切比雪夫多项式
基本性质
对每个非负整数n, Tn(x) 和 Un(x) 都为 n次多项式。并且当n为偶(奇)数时,它们是关于x 的偶(奇)函数,在写成关于x的多项式时只有偶(奇)次项。
切比雪夫最佳直线原理高中数学?
第一类Chebyshev多项式Tn(x)的最重要的逼近性质是: 在[-1,1]上所有首项系数为1的n次多项式中,Tn(x)/2^{n-1}对零的偏差最小,也就是说对于任何n次首一多项式p(x)都有max|p(x)| >= max|Tn(x)|/2^{n-1}。 这个性质的证明要利用Chebyshev交错点定理,应该超出高中知识范围了。
这个性质直观的解释是多项式“比较硬”,首项确定之后就不可能通过弯折它让它很好地逼近零了。
作为应用一般来讲是解决min max|p(x)|型的最值问题,其中max的范围是在闭区间[a,b]上,min的范围是对所有满足某一约束的不超过n次的多项式。
通常先利用仿射变换把标准区间[-1,1]上的Chebyshev多项式变换到区间[a,b]上再利用最佳逼近性质。
切比雪夫多项式的根?
切比雪夫多项式是以俄国著名数学家切比雪夫(Tschebyscheff,又译契贝雪夫等,1821一1894)的名字命名的重要的特殊函数,第一类切比雪夫多项式Tn和第二类切比雪夫多项式Un(简称切比雪夫多项式)。源起于多倍角的余弦函数和正弦函数的展开式,是与棣美弗定理有关、以递归方式定义的多项式序列,是计算数学中的一类特殊函数,对于注入连续函数逼近问题,阻抗变换问题等等的数学、物理学、技术科学中的近似计算有着非常重要的作用。对每个非负整数n, Tn(x) 和 Un(x) 都为 n次多项式。 并且当n为偶(奇)数时,它们是关于x 的偶(奇)函数, 在写成关于x的多项式时只有偶(奇)次项。扩展资料:切比雪夫多项式是超球多项式或盖根堡多项式的特例,后者是雅可比多项式的特例。切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。
切比雪夫多项式的推导方法?
洛毕达法则(L’Hospital)法则,是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法. 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x). 又设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x). 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足 或 型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.
切比雪夫多项式的意义?
切比雪夫多项式是以俄国著名数学家切比雪夫(Tschebyscheff,又译契贝雪夫等,1821一1894)的名字命名的重要的特殊函数,第一类切比雪夫多项式Tn和第二类切比雪夫多项式Un(简称切比雪夫多项式)。
源起于多倍角的余弦函数和正弦函数的展开式,是与棣美弗定理有关、以递归方式定义的多项式序列,是计算数学中的一类特殊函数,对于注入连续函数逼近问题,阻抗变换问题等等的数学、物理学、技术科学中的近似计算有着非常重要的作用。
对每个非负整数n, Tn(x) 和 Un(x) 都为 n次多项式。 并且当n为偶(奇)数时,它们是关于x 的偶(奇)函数, 在写成关于x的多项式时只有偶(奇)次项。
扩展资料:切比雪夫多项式是超球多项式或盖根堡多项式的特例,后者是雅可比多项式的特例。切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。