特征多项式的定义(特征多项式的定义和性质)

特征多项式的定义?

特征多项式是指常系数线性递推数列的分母,其生成函数是一个有理分式。

特征多项式在基变更下不变,在数学中,由若干个单项式相加组成的代数式叫做多项式。

多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。

其中多项式中不含字母的项叫做常数项,多项式中不含字母的项叫做常数项

二阶矩阵特征多项式是二次多项式,已知它的两个根是1和2,所以特征多项式就是(t-1)(t-2)即t^2-3t+2。二阶矩阵就是2纵2列,共4个元素。对于求解线性递推数列,我们还经常使用生成函数法,而对于常系数线性递推数列,其生成函数是一个有理分式,其分母即特征多项式。

矩阵,相似,特征多项式?

不一定。两个矩阵相似那么这两个矩阵有相同的特征多项式,这是一个必要条件,并不充分(就是说还不够全面)。全面的说应该是还要有相同的特征值。或者和在一起说两个矩阵有相同的初等因子。

矩阵可对角化的条件是这个矩阵的最小多项式没有重根,这里我举的反例显然不满足要求,所以不可对角化,自然也不与单位阵相似。

若矩阵可对角化,则可按下列步骤来实现:

1、求出全部的特征值;

2、对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

3、上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即|A-λE|=0。带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端 |A-λE|是λ的n次多项式。

把|λE-A|的各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式。

把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式。

多项式特征值公式?

(A-λE)x=0。在线性代数中,对一个线性自同态(取定基即等价于方阵)可定义其特征多项式,此多项式包含该自同态的一些重要性质,例如行列式、迹数及特征值。

在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。

特征多项式怎么化简求值?

多项式化简求值的方法是:先化简,再求值。

多项式化简涉及较多的是整式的加减:

其实质是去括号和合并同类项,其一般步骤为:

(1)如果有括号,那么先去括号;

(2)如果有同类项,再合并同类项。

注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。

整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。

合并同类项时要注意以下三点:

①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;

②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;

③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

为什么特征多项式为零?

因为一个矩阵的行列式等于这个矩阵所有特征值的积,当有一个特征值为0时,这个矩阵的行列式就为0。设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;3、A的迹等于B的迹——trA=trB;4、A的行列式值等于B的行列式值——|A|=|B|;5、A的秩等于B的秩——r(A)=r(B)。扩展资料:求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).

为什么特征多项式等于0?

因为一个矩阵的行列式等于这个矩阵所有特征值的积,

当有一个特征值为0时,这个矩阵的行列式就为0。设有n阶矩阵A和B,若A和B相似(A∽B)

则有:1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;

3、A的迹等于B的迹——trA=trB;

4、A的行列式值等于B的行列式值——|A|=|B|;

5、A的秩等于B的秩——r(A)=r(B)。

扩展资料:求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)

版权声明