引物是什么?
引物,是指在核苷酸聚合作用起始时,刺激合成的一种具有特定核苷酸序列的大分子,与反应物以共价键形式连接,这样的分子称为引物。引物通常是人工合成的两段寡核苷酸序列,一个引物与靶区域一端的一条DNA模板链互补,另一个引物与靶区域另一端的另一条DNA模板链互补,其功能是作为核苷酸聚合作用的起始点,核酸聚合酶可由其3端开始合成新的核酸链。体外人工设计的引物被广泛用于聚合酶链反应、测序和探针合成等。
设计引物注意事项?
1. 引物的长度一般为15-30 bp,常用的是18-27 (22)bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 碱基要随机分布。引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,如GGG或CCC,因这样会使引物在GC富集序列区错误引发。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。
引物设计基本原理?
原理??
1、 选择合适的靶序列:设计引物之前,必须分析待测靶序列的性质,选择高度保守、碱基分布均匀的区域进行引物设计。
2、 长度:一般来说,寡核苷酸引物长度为 15~30bp。
3、 Tm 值:引物的 Tm 值一般控制在 55~60℃,尽可能保证上下游引物的 Tm 值一致,一般不超过 2℃。若引物中的 G+C 含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度。
4、 (G+C)含量:有效引物中(G+C)的比例一般为 40~60%。
5、 碱基的随机分布:引物中四种碱基的分布最好是随机的,不存在聚嘌呤和聚嘧啶,尤其在引物的 3’端不应超过 3 个连续的 G 或 C。
6、 引物自身:引物自身不存在连续 4 个碱基以上的互补序列,如回文结构,发夹结构等,否则会影响到引物与模板之间的复性结合,尤其避免 3’末端的互补。
引物名词解释?
引物,是指在核苷酸聚合作用起始时,刺激合成的,一种具有特定核苷酸序列的大分子,与反应物以氢键形式连接,这样的分子称为引物。
引物通常是人工合成的两段寡核苷酸序列,一个引物与靶区域一端的一条DNA模板链互补,另一个引物与靶区域另一端的另一条DNA模板链互补,其功能是作为核苷酸聚合作用的起始点,核酸聚合酶可由其3端开始合成新的核酸链。体外人工设计的引物被广泛用于聚合酶链反应、测序和探针合成等。
引物在目的基因两侧还是里面?
在目的基因两侧。
因为PCR扩增的是包含引物在内的引物间的片段,如果不在引物两侧设计引物,将导致得不到完整的待扩增片段。
引物不会在目的基因中,它是一段与DNA互补的RNA链,而且与目的基因之外的两端互补。要是与目的基因中的序列互补,PCR出来的基因就会是不完整的。
真核生物dna复制的引物是什么?
就是RNA。
DNA的复制需要RNA引物,这是由DNA聚合酶和RNA聚合酶的特性决定的.DNA聚合酶不能从头合成DNA(需要引物DNA or RNA),因为DNA聚合酶具有高保真系统,这个系统要求,在新链的延伸过程中,只有新添加的碱基与模板链形成双螺旋才能继续链的延伸,否则延伸终止,启动切除修复机制,直至添加正确的碱基,也即是在DNA聚合酶的上游位置一定要互补形成双链(可以是RNA-DNA)才能继续下游DNA的合成,这是它的忠实性和高保真系统决定的.而RNA聚合酶可以从头合成RNA,合成的RNA游离在模板外,不需要与模板形成互补配对的双螺旋结构就能继续下游的合成.两种酶的不同机制决定了DNA复制时用的只能是RNA引物.
PCR反应中所用到的DNA引物,是用化学法人工合成的,与模板形成双链后在DNA聚合酶的作用下就可以继续链的延伸;而在体内,由于DNA聚合酶的忠实性,不能从头合成DNA,因此只能采用RNA引物来延伸了.
引物的作用是什么?
引物(primer),又名引子。是一小段单链DNA或RNA,作为DNA复制的起始点,在核酸合成反应时,作为每个多核苷酸链进行延伸的出发点而起作用的多核苷酸链。之所以需要引物是因为DNA聚合酶不能从零开始合成DNA,需要在一小段引物(RNA或DNA引物)后面启动DNA的合成。
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。